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We theoretically study the nematic ordering transition of rods that are able to elastically adjust their mutually
excluded volumes. The model rods, which consist of a hard core surrounded by a deformable shell, mimic the
structure of polymer-coated, rodlike fd virus particles that have recently been the object of experimental study
�K. Purdy et al., Phys. Rev. Lett. 94, 057801 �2005��. We find that fluids of such soft rods exhibit an
isotropic-nematic phase transition at a density higher than that of the corresponding hard-rod system of
identical diameter, and that at coexistence the order parameter of the nematic phase depends nonmonotonically
on the elastic properties of the polymer coating. For binary mixtures of hard and soft rods, the topology of the
phase diagram turns out to depend sensitively on the elasticity of a shell. The lower nematic-nematic critical
point, discovered in mixtures of bare and polymer-coated fd virus particles, is not reproduced by the theory.
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I. INTRODUCTION

Recently developed methods to control the contour length
and the effective diameter of elongated virus particles �1,2�
have opened up the way to systematically study the bulk
phase behavior of mono- and bidisperse rods over a rela-
tively wide range of lengths and widths. This is important,
because it allows for the experimental verification of a vast
amount of theoretical work that has been done on the
isotropic-to-nematic �IN� phase transition in dispersions of
mutually repelling rods, and in particular that on bidisperse
mixtures �3–8�. The agreement of theoretical predictions for
binary dispersions with experimental data �9–14� has so far
not been as impressive as that for monodisperse ones
�15,16�, where the impact of, e.g., the size �17�, shape �18�,
molecular flexibility �19–21�, and Coulomb interactions
�22–24� appears to be well understood �7,25�.

One of the reasons for this state of affairs is probably that
in binary mixtures there is a coupling between ordering, frac-
tionation, and demixing, leading to a much more complex
phase behavior �7,8,26–28�. Indeed, in bidisperse systems
more length scales compete with each other, presumably
making them more sensitive to the effects of flexibility, re-
sidual van der Waals attractions, nonadditivity, or charges
�5,29–32�. Binary mixtures are therefore a much more criti-
cal gauge of the accuracy of theories than monodisperse sys-
tems are. In some cases, the disagreement between theory
and experiment is not just quantitative �16� but even qualita-
tive. For example, in experiments on aqueous mixtures of
bare fd virus particles and fd virus particles onto which poly-
meric chains are grafted, Purdy et al. �2� discovered a
nematic-nematic coexistence region that exhibits a lower
critical point. Extensions of Onsager’s classical second-virial
theory for infinitely rigid rods incorporating a diameter bid-
ispersity do not predict such a lower critical point

�4,27,28,33�, not even if one allows for nonadditivity of the
interactions between the species �32�. However, these theo-
ries do predict a nematic-nematic demixing either with an
upper critical point or no critical end point at all
�8,28,34,35�.

Theoretically, nematic-nematic demixing transitions of
bidisperse rods with a lower critical end point have been
predicted, but only for rods with a sufficiently large bending
flexibility �37�, or for sufficiently short rods for which
higher-order virials become important �31,38–42�. It ap-
pears, however, that some of the predictions are quite sensi-
tive to the invoked approximations, and in our view the issue
remains contentious. For instance, depending on how pre-
cisely higher-order virials are approximately accounted for,
the lower critical point appears and disappears in the phase
diagram �43�. This is reminiscent of the qualitative difference
in the predicted phase behavior of hard-rod mixtures, de-
pending on whether the exact orientational distribution is
used or a Gaussian approximation to that �8,28,34,35,44�.
So, given the apparently inherent sensitivity to the details of
the theories, it remains important to explore alternative ex-
planations of the observed phase behavior, and in particular
that of the lower critical end point.

A factor that has not been considered, and that could sig-
nificantly influence the phase behavior in systems such as
those studied by Purdy and co-workers, is the finite com-
pressibility of the polymer coating of the rods. The effective
diameter of these polymer-coated rods is not necessarily
fixed but could well be a function of the thermodynamic
state of the dispersion. So far, the dimensions of rodlike col-
loids have been treated as quenched variables, i.e., as invari-
ants of the thermodynamic state of the suspension. �An ex-
ception to this is micellar rods with annealed length
distribution �45�.� With the polymer-coated rods of Ref. �2�
in mind, it seems opportune to consider explicitly the elastic
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response of this coating to the osmotic pressure of the dis-
persion. Contrary to, for instance, theoretical work on the
crystallization of dendrimers, where entropic interactions of
a similar nature are modeled by a soft potential �46�, we
model the effects of compression not at the interaction po-
tential level but at the level of the volume exclusion. In ef-
fect, our theory is that of particles with an annealed diameter,
and hence an annealed excluded volume.

Our calculations show that monodisperse fluids of elasti-
cally compressible rods exhibit an isotropic-nematic phase
transition at a density higher than that of the corresponding
incompressible-rod system of equal diameter, as expected.
How much higher depends on the stiffness of the shell.
Weakly impacted upon by the shell stiffness is the relative
density gap in the coexisting phases. For binary mixtures of
incompressible and compressible rods, the structure of the
phase diagram changes dramatically with varying elasticity
of the coating, showing once more the sensitivity of these
kinds of mixtures to the details of the interactions �32�. Still,
the topology of the phase diagrams that we calculate does
bear some resemblance to that of incompressible hard-rod
mixtures of unequal diameter: an upper but no lower
nematic-nematic critical point is produced by the theory.

The remainder of this paper is organized as follows. In
Sec. II, we first introduce the Onsager-type free-energy func-
tional, and derive from that the basic Euler-Lagrange equa-
tions describing the orientational and density distribution of
the elastically compressible rods under conditions of thermo-
dynamic equilibrium. In Sec. III, we study the behavior of a
monodisperse fluid of such compressible rods. In order to
obtain an analytical solution to the model, we invoke a
Gaussian approximation to the orientational distribution
function. We compare this analytical theory with an exact,
numerical evaluation and find fair agreement. In Sec. IV we
analyze the bulk phase diagrams of binary mixtures of hard
rods and elastically compressible ones, but now only numeri-
cally keeping in mind the sensitivity of the binary phase
diagram to approximations invoked. A summary and discus-
sion of the results are presented in Sec. V.

II. DENSITY FUNCTIONAL AND METHOD

We are concerned with the bulk properties of a fluid of
cylinders of two different species �=1,2 of diameter D� and
equal length L in a macroscopic volume V at temperature T
and chemical potentials ��. We presume the limit D� /L
→0 to hold, in which case a second virial theory is believed
to be exact �47�. The “effective” diameter D1 of the thin rod
is determined by the bare hard core of the particle D1
=�core, whereas the diameter of the thick �coated� rods is
written as D2���=�core+��pol, with �pol twice the thickness
of the soft polymeric shell. The compression factor �
� �0,1� parametrizes the deformation of this soft shell due to
interactions with other rods in the system. At infinite dilu-
tion, we expect zero deformation of the thick rigid rod, i.e.,
�=1, and it is convenient to define the limiting diameter
ratio d=D2��=1� /D1=1+�pol /�core.

The compression of the grafted polymer layer reduces the
excluded volume, as we will see explicitly below, at the ex-

pense of an elastic energy. Introducing the rigidity k of the
polymeric shell, we write the elastic energy of a single rod at
a compression equal to � as k��2+�−2−2� /2 in units of ther-
mal energy kBT. It is inspired by the theory of ideal �Gauss-
ian� polymers �36�, where we presume that the grafted poly-
mers are not strongly stretched �2�. Hence, we expect the
numerical value of the rigidity k to be of order of the number
of chains grafted onto each rod. However, for simplicity we
presume it to be a free parameter. Note that for �=1, the
elastic contribution to the free energy is zero, as it should be.

The total grand potential ���1 ,�2� of the spatially homo-
geneous suspension is now written as a functional of the
distribution functions ���u�, where u denotes the unit vector
along the axis of a rod. The distributions are normalized such
that �du���u�=n�, the number density of species � at the
imposed chemical potential. Within the second virial ap-
proximation, we write the functional as �7,15�

��������
V

= �
�
	 du���u��ln����u���� − 1 − ����

+
1

2 �
���

	 dudu�E����u;u�����u�����u��

+
1

2
k��2 + �−2 − 2� 	 du�2�u� , �1�

with �= �kBT�−1 the inverse temperature, �� the thermal vol-
ume of the species �, and the excluded volume due to hard-
core interactions

E����u,u�� = L2�D� + D���
sin�arccos�u · u���
 , �2�

where additional O�LD2� terms are being ignored, in line
with the needle limit �D� /L→0� of interest here.

The equilibrium conditions on the functional,
	������� /	���u�=0 and �������� /��=0, lead to the set of
nonlinear integral equations,

��� = ln����u���� + �
��
	 du�E����u,u������u��

+
1

2
	�,2k��2 + �−2 − 2� ,

0 = k�� − �−3� 	 du�2�u�

+
1

2 �
���

	 dudu�
�E����u,u��

��
���u�����u�� , �3�

to be satisfied by the equilibrium distributions. The � deriva-
tive in the last line involves the � dependence of D2 through
Eq. �2�. These equations can be solved, either approximately
within a Gaussian approximation or numerically on a grid
of orientations. Details of the numerical schemes have been
discussed elsewhere �28,33�. Here, in order to find the
bulk uniaxially symmetric distributions ���
i�, with 

=arccos�u ·n� the angle between the rod unit vector u and
the nematic director n, we use a nonequidistant 
-grid of
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N
=30 points 
i� �0,� /2�, 1� i�N
, with 2/3 of them uni-
formly distributed in �0,� /4�. The resulting distributions can
be inserted into the functional to obtain the grand potential
−pV, with p the pressure. Then the complete thermodynam-
ics can be inferred, as well as the phase diagram.

III. MONODISPERSE SOFT RODS

As demonstrated in Refs. �7,15�, the IN transition in sus-
pensions of rigid rods is a result of a competition between
the orientational entropy and the packing entropy �free vol-
ume�. In order to estimate the impact of the elastic term of
Eq. �1� on the IN transition, we first restrict our attention in
this section to a purely monodisperse system of coated rods.
Formally, this can be achieved by considering the limit
��1→− and �1�u�L2D1→0 in the functional and its mini-
mum conditions, and in this paragraph we drop the species
index “2” for convenience.

First, instead of numerically solving for the minimum
conditions, we adopt a Gaussian ansatz for the one-particle
distribution function in the nematic phase, with ��u�
�exp�−�
2 /2� for 
�� /2 and ��u��exp�−���−
�2 /2� for

�� /2. Here, � denotes a variational parameter that we fix
by minimizing the free energy. From Eqs. �3� we obtain the
following relations between the density and the compression
in the isotropic phase I, where ��0, and in the nematic
phase N, where �=4cN

2 /� in terms of the dimensionless con-
centration cN defined below,

��I = ln cI + 2cI
D��I�
D�1�

+
1

2
k��I

−2 + �I
2 − 2� , �4a�

cI =
kD�1�
�pol ��I

−3 − �I� , �4b�

��N = 3 ln cN + 2 ln�D��N�
D�1�  +

k

2
��N

−2 + �N
2 − 2� + C ,

�4c�

2 =
kD��N�

�pol ��N
−3 − �N� , �4d�

with C=2 ln 2�−1/2+3, cI�N�= �� /4�nI�N�L
2D�1� the dimen-

sionless number density of the I�N� phase, D���=�core

+��pol the effective diameter of the coated rods, and D�1�
=�core+�pol. In addition, the dimensionless pressures p*

= �� /4��pL2D�1� of the isotropic and nematic phases can be
written as

pI
* = cI�1 + cI

D���
D�1� , pN

* = 3cN. �5�

Note that in the isotropic phase �i� the compression �I
decreases monotonically with increasing cI �see Eq. �4b��,
and �ii� the elastic contribution to the free energy grows with
increasing density, as one might in fact expect. More inter-
estingly, in the nematic phase the rigidity and geometric pa-
rameters of the rods fully determine their compression �see

Eq. �4d��, which is independent of concentration �at the level
of the Gaussian approximation�. Hence, in the nematic phase
the contribution of the elastic compression can be considered
as an effect of a uniform bulk field that renormalizes the
value of the chemical potential. This is also consistent with
the expression for the pressure of the nematic phase, which is
only indirectly affected by the elasticity of the polymer coat-
ing of the rods. Overall, the elastic term shifts the IN transi-
tion to higher densities due to reduction of the effective di-
ameter D���. The results of our calculations are shown in
Fig. 1 for the system with d=3, and other values of d lead to

FIG. 1. �a� Equation of state for a fluid of monodisperse soft
rods �d=1+�pol /�core=3� in terms of the dimensionless bulk pres-
sure p*= �� /4��pL2D�1� and the dimensionless density c
= �� /4�nL2D�1� for several values of shell rigidities k=0.1,1.0,10.
The inset shows the dependence of the compression factor � on
density c for the same values of k as in the main plot. �b� Bulk
phase diagram for the same system in c−k coordinates. The coex-
istence region �gray area� separates regions of the isotropic �I� and
nematic �N� phase, and the tie-lines connecting coexisting phases
are vertical. The dotted lines indicate the corresponding coexistence
IN curve, calculated with the Gaussian trial function �Eqs. �4� and
�5��. The inset shows the dependence of the compression factors
�I,N on density c at IN coexistence for the same range of k as in the
main plot.
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similar phase diagrams.
In Fig. 1�a�, we show the dependence of the dimension-

less bulk pressure p* on the dimensionless number density c
�i.e., the equation of state� for several values of rigidity k of
the polymeric shell of the rod. The solid lines represent di-
rect numerical solutions of Eqs. �3�. The results of calcula-
tions within the Gaussian approximation are quite close to
those from our numerical calculations, albeit that they over-
estimate the rod density in the coexisting isotropic and nem-
atic phases by about 5% and 20%, respectively �not shown
here for the sake of clarity� �7�.

Imposing conditions of mechanical and chemical equilib-
rium between isotropic and nematic phase, we calculated the
densities and the compression factors of the rods in the I and
N phases at coexistence, and present these in Fig. 1�b� for the
realistic range of rigidities of k� �0.1,10�. The dotted lines
give the results of the calculations within the Gaussian ap-
proximation, whereas the numerical solutions to Eqs. �3� are
represented by the symbols, with the solid lines serving as a
guide to the eye. While the predictions for the concentration
of rods in the isotropic phase at coexistence are in almost
quantitative agreement, those for the phase gap are not: the
Gaussian approximation overestimates the phase gap by a
factor of about 2. For rigidities of order k�10, the limiting
densities cIN of the coexisting phases approach the values of
the corresponding hard rod system. The polymeric shells of
the rods are then only slightly deformed ���1�. On the other
hand, in the limit of small k, the densities at coexistence
approach those of hard rods with the smaller hard-core di-
ameter �core, because in that case �→0. The leveling off
occurs only for very small values of k, and is not shown in
Fig. 1�b�. The compression factors �I,N of the rods in the

coexisting phases are shown in the inset. The values calcu-
lated within the Gaussian approximation are similar to those
obtained from our numerical analysis. Again, in the isotropic
phase the agreement is almost quantitative.

It is clear from Fig. 1 that the dimensionless density c at
the IN transition increases with a softening of the polymer
layer, which of course is not all that surprising. From a theo-
retician’s point of view, c= �� /4�nL2D�1� is indeed the pref-
erable concentration scale, because it does not depend ex-
plicitly on �. The question now arises whether
experimentally the bare diameter D�1� of the rods might be
determined from the actual concentration of particles at
which the nematic phase appears �7,25�. The answer appears
to be negative, because the actual diameter will not have this
value at the point where the nematic phase becomes stable. If
D�1� were determined independently, e.g., from the com-
pressibility at low concentrations, then this would allow one
to obtain a value for k.

Theoretically, the structure of Eqs. �4� and �5�, hints at the
usefulness of the scaled densities c�= �� /4�nL2D���, and it
is instructive to compare both density representations be-
cause it helps to explain the underlying physics. The phase
diagram of Fig. 1 redrawn in terms of �c� ,k� is shown in Fig.
2. It suggests that the density variation with k at the IN
transition mainly comes from the reduction of the effective
diameter D��� the rods. This conclusion is supported by the
similarity of the values of the compression �I,N of the poly-
mer shells of the rods in the coexisting phases, the depen-
dencies of which on the density c� are presented in the right
inset in Fig. 2.

Finally, several other quantities can be useful for qualita-
tive comparisons with experiments. In the left inset in Fig. 2
we present the density ratio r=c�,N /c�,I of the I and N phases

FIG. 2. The same bulk phase diagram as in Fig. 1�b� in terms of
the scaled density c�= �� /4�nL2D��� vs rigidity of the polymeric
shell k. The right inset shows the dependence of the compression
factor � on the density c� for the same values of k as in the main
plot. The left inset shows the ratio r=c�,N /c�,I of the densities of
coexisting N and I phases �solid line� and the nematic order param-
eter S �dashed line� as a function of k. The right inset gives the
compression � of the rods in the coexisting phases, as a function
of c�.

FIG. 3. Bulk phase diagrams in terms of the dimensionless den-
sity c�= �� /4�nL2�pol vs relative thickness of the polymeric shell
�pol /�core for rods with several rigidities k=0.1,1.0, and 10. The
inset shows the dependence of the compression factors � in coex-
isting phases on �pol /�core for the same values of k as in the main
plot.
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at coexistence, as well as the nematic order parameter S as a
function of the rigidity k. The dependence of cN /cI of the
unscaled densities on k is similar to that of c�,N /c�,I, and is
not shown here. The small variations of c�,N /c�,I and S with
k indicate that in experiments it would be quite hard to use
these two quantities to determine the shell rigidity k.

Variation of the molecular weight of polymer that forms
the shells of the rods allows for a modification of its thick-
ness �pol. In Fig. 3, we show several bulk phase diagrams in
terms of the dimensionless densities c�= �� /4�nL2�core and
the ratio �pol /�core for systems with rigidities k=0.1, 1, and
10. Note that our previous definition of the scaled density
c= �� /4�nL2D�1� �as in Eqs. �4� and �5�, and Fig. 1� would
be inconvenient here, as it contains explicit dependence on
�pol. At the smallest studied thickness of the polymeric shell,
�pol /�core=0.1 densities c�,IN closely approach correspon-
dent values for monodisperse hard rods. As the thickness of
the shell increases, the transition densities c�,IN decrease as
one would in fact expect. The inset in Fig. 3 shows the varia-
tion with the shell thickness of the compression factors �I,N

for the same k’s as in the main plot. It appears that the com-
pression of the shells increases for larger values of �pol.

IV. BINARY MIXTURES

For binary mixtures of soft rods, the effective diameters
D���� are different, and one can expect significant modifica-
tions of the phase behavior in comparison with the hard-rod
binary fluids. We study the bulk properties of mixtures of
bare hard and coated soft rods with d=3.0, 4.0, 4.3, and 4.5
for various values of k, chosen to mimic the experiments of
Ref. �2�. Before presenting results of our calculations, it is
useful to recall the structures of the bulk phase diagrams of
hard-rod mixtures, i.e., of mixtures of incompressible rods
with different diameters. For all values of the parameter d,
they exhibit a low-density I phase, which at some interme-
diate values of densities separates into coexisting I and N
phases with different composition. In mixtures with d�4.0,
the high-density region has a single N phase, whereas for the
systems with d�4.0 this N phase can demix into two differ-

FIG. 4. Bulk phase diagrams of binary mixtures of hard ��1
pol=0� and soft rods d=3.0 �a�, 4.0 �b�, 4.3 �c�, and 4.5 �d� in terms of the

dimensionless pressure p*= �� /4��pL2�core and the composition x=n2 / �n1+n2� for different rigidities: k=0.1 �solid�, k=1.0 �dashed�, k
=5.0 �dotted, only in �c��, and k=10 �dot-dashed�. In �c, d�, � indicate the isotropic I and nematic N1 ,N2 phases of different composition at
coexistence, and the NN remixing point in �c� is marked with �.

THEORY OF THE ISOTROPIC-NEMATIC TRANSITION¼ PHYSICAL REVIEW E 74, 021710 �2006�

021710-5



ent nematics N1 ,N2 �depending on the composition�. The
diameter ratio d of the species also determines whether this
NN phase separation persists to �arbitrary� high densities �d
�4.2�, or whether these N1 ,N2 phases remix back �7,34,35�.

The phase diagrams of the “soft-hard” mixtures were de-
termined by solving Eqs. �3� under conditions of mechanical
and chemical equilibrium. We have verified that an artifact
resulting from the discretization of the angular degrees of
freedom of the rods, and that produces a nematic phase of
perfect orientational order, does not interfere with our calcu-
lations �48�.

The results of the calculations are shown in Fig. 4, where
we give the bulk phase diagrams of the mixtures in terms of
the dimensionless pressure p*= �� /4��pL2�core and compo-
sition x=n2 / �n1+n2� for different rigidities k. In this repre-
sentation, the tie lines connecting coexisting state points are
horizontal because they correspond to the equal pressure
condition. There are several features of the bulk phase dia-
grams that we would like to point out.

�i� For all diameter ratios d of mixtures of hard and very
soft rods �k�0.1�, the pressure p* at coexistence varies al-
most linearly with composition xN of the nematic phase. De-
tailed numerical evaluations show that p* depends approxi-
mately linearly on the total density of the mixture n=n1
+n2, which is reminiscent of the behavior of a monodisperse
system. This is to be expected, because there is only a weak
coupling then to the elastic response of the soft component.
In our calculations, both hard and soft rods have a hard core
of equal diameter.

�ii� For a given value of d, the phase gap at IN coexist-
ence is significantly smaller for systems with smaller values
of k than that for large k. A large phase gap is usually seen as
indicative of polydispersity effects. Interestingly, a narrow
IN phase gap was observed in the experiments with PEG-
coated fd-viruses �2�, much narrower than to be expected if
both components were indeed incompressible.

�iii� Although a rigidity of k=10 seems high and should
render the mixture close to that of hard rods of unequal di-
ameter, as can inferred from our results on monodisperse
rods in Sec. III, an N1N2 phase separation is not observed for
d=4.0. We recall that it does manifest itself in rigid hard-rod
mixtures of this diameter ratio �28,33�. Such a strong sensi-
tivity of the stability of the nematic phase on the elasticity of
the shell is also seen in Fig. 4�c�, where an increase of the
rigidity from k=5 to 10 hardly affects the IN transition
curves, whereas it does prevent the N1N2 remixing at high
pressures in the k=10 case.

Finally, in Fig. 5 we show the compression factor �I,N�x�
of the polymeric shells of the rods in the coexisting I and N
phases for k=0.1, 1, 5, and 10 for d=4.3, as a function of the
mole fraction x. Mixtures with other values of d and k pro-
duce similar curves. Upon an increase of the relative concen-
tration x of the soft rods, compression of the polymer shells
increases monotonically, which reflects the proportionality of
the elastic energy to x. Note that �I�x���N�x� for all the
systems studied. Almost linear curves �I,N�x� for extremely
soft rods �k=0.1� again indicate effectively monodisperse
behavior.

V. SUMMARY AND DISCUSSION

In this paper, we have explored the bulk phase diagrams
of monodisperse compressible rods and those of binary mix-
tures of incompressible and compressible rods. Our motiva-
tion for this is the experiments by Purdy and co-workers, in
which polymer-coated fd virus particles were mixed with
bare fd in aqueous suspension �2�. Not surprisingly, our
study shows that a pure system of coated rods, modeled here
by an elastically responding excluded-volume interaction, re-
quires a higher number density to obtain a nematic phase
than that of incompressible rods of equal diameter. Neverthe-
less, the density ratio of the rods in the coexisting phases
remains very close to that of the pure hard-rod system, being
1.274. The same, in fact, is true for the nematic order param-
eter. This implies that these dimensionless quantities cannot
be used to estimate the elastic modulus k of the polymer
coating. For known values for the coat thickness, �pol, and
the bare core diameter, �core, that of the modulus k might be
calculated from the observed absolute density in either coex-
isting phase, using, e.g., Fig. 1 if �pol /�core=2.

The situation is very different when it comes to mixtures
of compressible and incompressible rods, which we have in-
vestigated for relative coat thicknesses in the range of values
equal to d=1+�pol /�core=3.0, 4.0, 4.3, and 4.5. We find that
the topology of the phase diagram in the pressure-
composition representation changes quite dramatically in this
small range of d values, with 0.1�k�10. Upon an increase
of the shell rigidity from the lowest to the highest value, we
find �i� that the degree of fractionation at IN coexistence
increases, and �ii� that the NN binodal, if present, changes
from domelike to chimneylike, i.e., the upper critical point
moves to infinite pressures at a critical value of k that de-
pends on d. For conditions where there is an upper critical
point in the phase diagram, we did not find a reentrant NN

0 0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

g

FIG. 5. Compression factors � as a function of the mole fraction
x in the coexisting isotropic �lower curve of each pair� and nematic
�upper curve of each pair� phases in the binary mixture with d
=4.3. Different pairs of curve correspond from bottom to top to
increasing values of the rigidity k=0.1,1.0,5.0 and 10. See also
Fig. 4�c�.
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phase separation at higher pressures, i.e., no lower critical
NN point was found. Therefore, the experimentally observed
lower critical point cannot be explained by a compressible
polymer coating, at least not within an Onsager type of ap-
proach.

As it is now clear that the phase behavior of the rods
depends sensitively on the presence and properties of a poly-
meric coating, we suggest that a realistic model of any ex-
perimental system involving coated rodlike particles should
not only correct for a finite bending rigidity and/or finite

length, but also for the elastic softness of that coating. We
intend to pursue this in the near future.
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